OPERATION OF THE SIMPLEST GAS EJECTOR FROM
THE POINT OF VIEW OF THE THERMODYNAMICS
OF IRREVERSIBLE PROCESSES

I. S. Borovkov UDC 533.697.5

It is shown that the existence of critical modes of operation of a sonic gas ejector with a cyl-
indrical mixing chamber can be determined by one of the theorems of the thermodynamics of
irreversible processes, the Prigogine theorem.

Let us consider from the point of view of the thermodynamics of irreversible processes the operation
of a sonic gas ejector with a cylindrical mixing chamber (Fig. 1), with the idea of proving that the existence
of critical modes of operation of gas ejectors can be determined by one of the theorems of the thermodynam-
ics of irreversible processes, the Prigogine theorem.

We will assume that 1) the specific heat capacities Cp and cy of the ejecting and ejected gases and of
the gas mixture at the exit from the mixing chamber of the ejector do not depend on the temperature and
are identical, 2) the flows of these gases are one-dimensional, 3) the stagnation temperatures of the eject~
ing and ejected gases are equal, and 4) wall friction and heat transfer through the walls of the mixing cham-
ber are absent.

With these assumptions the geometrical and gas-dynamic parameters of the ejector under considera-
tion are related, as shown in [1-3], by the following equations:
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In the equations presented, which are the consequence of the laws of conservation of energy, mass,
and momentum, T, and p, are the stagnation temperature and pressure; a = F{/F, is the ratio of cross-
sectional areas of the ejecting and ejected gases at the entrance to the mixing chamber; n = G,/G, is the
ratio of mass flow rates of these gases or the ejection coefficient; A is the velocity coefficient;
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Fig. 1. Schematic diagram of ejector.
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Fig. 2. Typical throttle characteristics of ejector.
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where % = cp/cy;
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and finally, the indices 1, 2, and 3 denote the parameters of the ejecting and ejected gases at the entrance
to the mixing chamber and of the gas mixture at the exit from the mixing chamber of the ejector, respec-
tively (see Fig. 1).

It follows from Eqgs. (2) é.nd (3) that
g (ry) = allyn, (6)
where II; = pg;/py, is the ratio of stagnation pressures of the ejecting and ejected gases.

Equation (4), the designation (5), and Eq. (6) show that for fixed values of @, II;, and n the conser-
vation laws allow two solutions for the velocity coefficient As:

Me=z(g)— 1 2Ry — 1,
MY =z(hg) 3 F(hg) —1 .

The first of these solutions corresponds to subsonic and the second to supersonic flow at the exit from the
ejector mixing chamber, since

AFAFE =1,

No analytically or physically justified rules for choosing the coefficient A; from Af or Af* exist at
present. This leads to the fact that at fixed values of a, I, and p,, the pressure in the space where the
discharge from the ejector mixing chamber occurs, the conservation laws (1)-(4) are satisfied, generally
speaking, by an infinite set of values of n.

The results of a test of the ejector under consideration at fixed values of & and 1, can be represented
in the form of the dependence on n of py3/pys, Which is obtained upon a decrease in the pressure p,. In ac-
cordance with these results (see, for examplé, Fig., 2, borrowed from [4], where p, is the total pressure
at the exit from the ejector diffuser) the ejection coefficient n first inereases with a decrease in the pres-
sure p, and then after reaching some critical value ng, it remains constant. At subcritical modes of ejec-
tor operation (corresponding to the sections AB of the dependences of py/py on h in Fig. 2) the flow velocity
at the exit from the mixing chamber is subsonic, i.e., A3 = Af, while in the supercritical modes (corre-
sponding to sections BC in Fig..2) it is supersonic, i.e., A3 = Af*. In the subcritical modes py = p,;, while
in the supercritical modes p; < p,, in connection with which one shock wave or a system of shock waves, in
which the pressure p; exceeds p;, develops at the exit from the ejector in these modes,

The existence of critical modes of operation of gas ejectors was discovered experimentally by M. D,
Millionshchikov and G, M. Ryabinkov, After the discovery these modes were studied by I. I. Mezhirov
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and G. 1. Taganov, A. A. Nikol'skii and V. I. Shustov, Yu. N. Vasil'ev,
G. L. Grodzovskii, and other authors in whose reports different meth-
ods were proposed for determining n,,. which give practically identical
results in wide ranges of «, I, etc.

All the methods indicated above are based on the same point of
view toward the nature of the critical modes of ejector operation ac-
cording to which these modes are realized when the ejected gas reaches
the speed of sound in some internal section of the mixing chamber (see
Fig. 1), usually called the blocking section.

The values of ngy which are obtained by the method suggested in
g [5] are used below as the values of n,,. corresponding to this point of
view,

Fig. 3. Formof dependences .
of P ;1 jand P I’;;‘; on n. In addition to the simplifying assumptions 1), 2), and 4) formulated
above the following assumptions are made in [5]: the flows of the eject-
ing and ejected gases up to the blocking section do not mix with each
other and are one~dimensional; the static pressures of the ejecting and ejected gases at the blocking sec-.
tion differ but are such that between the entrance section and the blocking section the momentum equation

is satisfied.

With all these assumptions the values of ny, for a sonic ejector with a cylindrical mixing chamber '
and Ty = Ty, can be determined:from the system of equations
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where the index cr designates the critical mode of ejector operation while ' designates the blocking section.

. In the casen,, =0 the system (7) becomes indeterminate and therefore it must be transformed again
with the help of passage to the limit n,p = 02
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This system determines Iy and n,,. = 0.

It is important.to note in addition that the values of nqp determined by system (7) are in satisfactory
agreement with the experimental values of ng, in wide ranges of o and II,.

After these preliminary but subsequently needed remarks let us introduce into the discussion the con-
cept of the production of entropy in the ejector mixing chamber and then, operating with this concept, we
will make use of the second law of thermodynamics and Prigogine's theorem.

In accordance with the definition (see [6], for example), the production of entropy P in any thermo-
dynamic system is the increase per unit time of that part of the entropy which originates in the system it-

self:
d;S

b= )

where d;S is the increase in entropy originating in the thermodynamic system in the time dt.
It follows from the definition (9) that the production of entropy in the ejector mixing chamber is
P mi= _(Gl -+ Gz) 83— (Gys; + Gs,), (10)

where s is the entropy of a unit mass of gas and (G + Gy)s3 and Gy8; + G;8, are the fluxes of entropy at the
entrance and exit sections of the mixing chamber, respectively.
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Fig. 4. Dependences of n,,, n, and ngon I,

As is known, the entropy of a unit mass of an ideal gas with the accuracy of the constant equals
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where p is the molecular weight, C p is the molecular heat capacity at constant pressure, and R is the
universal gas constant. If Cou does not depend on the temperature (and just such a case, as noted above,

is considered in the report),
"
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where B is a specific gas constant.

From this, with allowance for Egs. (1)-(3), it follows that Eq. (10) can be converted to the form

;n1n[”(1+°‘) A% }} (11)
‘ 1+n gy 1’
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P,;= BG, {ln [ 70y

where the coefficient 23 is determined by Eq. ) and A, by Eq. (6).
Two values of Ppyj will figure below: P#; corresponding to A; = A and P} corresponding to Ag= A3*

The calculations show that independently of the values of a and II; the dependences of Ppi and P;{';
onn (see Fig. 3) have the following properties: P%;m) > 0if 0 =n <ny, Pr¥@) = —w if n =n;, PXn)

=0ifn;=n=n, 0=P}n) <P¥;m) ifn,<n<ny PXih) =Pri@) ifn=n,

i
In these relationships the value n; corresponds to the maximum possible value of z(A;) = nA/ n2—1

when A3 > 1, i.e.,

%— Vw1

y @i —1lz(dy) —=x
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"CI,X where q(Ay) = aHoni. The value n, is that value of n at which the en-
10 : tropy production P becomes equal to zero. And finally, the value
\ ot n, is the maximum pOSSLbIe value of the ejection coefficient, corre-
n sponding to Ay = Ay = N3 = Lt
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Let us consider the dependences Py; n) and P** (n) from the
point of view of the second law of thermodynamics.

’5 7 5 iy According to the second law the production of entropy both
\“=’ o Ty | a=0/67 within an entire isolated thermodynamic system and within any of

% N\ % its parts can only be nonnegative. In other words, for the ejector

a’ %00 5., b considered here the following conditions must always be satisfied:
y °200000g|, .

¢ o w k7 My PLi>0, (13)

Fig. 5. Comparison of n, and ny dPpy(l) >0 (14)

with experimental values of n,,. dl -

where [ is the distance between the entrance section and an arbitrary
internal section of the mixing chamber and Py,i (!} is the entropy
production between these sections,

Since P2 ;@) > 0 for all values of n while PI";{'{(n) = 0 for n = n,, in accordance with the condition (13)
in the case when Ag = Af all values of n are possible, i.e., 0 =<n =njz, while in the case when A3 = Af* only
values of n equal to or greater than n, are possible, i,e., ny =n =n,.

Naturaliy it is not possible to control in general form the fulfillment of condition (14) when consider-
ing only the entrance and exit sections of the ejector mixing chamber, However, it is clear in advance that
this condition is not satisfied when A; = Af* and n = n,, and conversely, it is satisfied when A; = Af or Az=A%*
and n = nj. Actually, if condition (14) were satisfied in the first of these cases then this case, on the one
hand, could actually be achieved, while on the other hand it would be characterized by zero entropy produc-
tion during the irreversible process of the mixing of the ejecting and ejected gases. In the second case
M = Ay = A3 =1, and the entropy production between the entrance section and an arbitrary internal section
of the mixing chamber will be the greater, the more completely the process of mixing of the ejecting and
ejected gases takes place. Obviously, this process can only develop monotonically along the mixing chamber.

The circumstance that condition (13) is always satisfied while (14) is not satisfied when A; = A§* and
n =n, and is satisfied when A3 = Af* and n = n3 allows one to presume the existence of a value ny starting
with which the conditions (13) and (14) are satisfied simultaneously. This value ny (see Fig. 3) naturally
must lie between n, and ng:

1y < Ty < .

Finally, let us use Prigogine's theorem, according to which the value of P must be the least of all
possible values for the given conditions:
P=prP

min*

We must note first, however, that the Prigogine theorem is used here in the formulation due to C. Kittel
[7]: the stationary, i.e., independent of time, state of the system in which the irreversible process occurs
is the state having the least value of entropy production compatible with the external conditions.

Let us examine the process of a decrease in the pressure p, and an increase in the ejection coefficient
n with fixed values of a and II,.

When that pressure p, is reached at which the coefficient n becomes equal fo ny, according to Prigo-
gine's theorem a transition should take place from the mode for which A; = Af to the mode for which A;=2a}*,

since P (ny) is greater than PX% (). With a further decrease in p, the coefficient n must remain con-
stant according to Prigogine's theorem, since the value of PI’;"{ () is the smallest possible,

The process of an increase in p, with fixed values of o and II; can be examined in an analogous way,
as well as the case of the instantaneous establishment of some values of p, and II,, for a given value of a.
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Thus, from the point of view of classical thermodynamics and the thermodynamics of irreversible
processes the question of choosing the coefficient A; from the values A3 = Af and A3 = A}* which are allowed
by the conservation laws and the question of the nature of the critical mode of operation of the ejector under
consideration are interrelated: for fixed values of @ and I, the value A; = A* and the critical mode are
realized for the smallest possible value of the entropy production PX% (ny).

It follows from the discussion that n,p =ny and n, <ng, <n.

Here the value n, is determined from the condition Pml {ny) = 0 which, as follows from (11), is equiva~
lent to the system of equations
I4+a %% —]—nln[”"z(H—“) q(?»;"*)]zo
1n I: OL(l-:-nZ) q(?\,s ) :I 2 I—an q(}~2) -
14 n,z () (15)

Z(;@‘*) =l 2N
1+ n,

q () = odln,.

For small values of n, it is inconvenient to use this system, like the system (7), since at n, = 0 the product
n,yz(},) is converted to indeterminacy of the type 0-«. In connection with this, in addition to system (15) it
is advisable to have a system obtained from (15) after transition to the limit n, = 0:

gd*y =

(16)
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This system determines II; for a given « in the case n, = 0,
The value n; is determined from Eq. (12):

1
odl,
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Now the question naturally arises of whether the values of ngy which are determined by the system of
equations (7) and are in satisfactory agreement, as noted above, with the corresponding experimental val-
ues, lie between the values n, and ng which are determined by the system (15) and Eq. (12).

For an answer to this question the dependences ngy(Iy), n,(Ily), and n,(Il,) were calculated for dif-
ferent values of a.

As follows from Fig. 4, where these dependences are presented for several @, the values ney lie be-
tween n, and n;, with n,,. only slightly exceeding n, especially at large values of o and at small and large
values of IT,. (The maximum values of I, corresponding to n,,. = 0 and n, = 0 are the same, since the sys-
tems of equations (8) and (16) convert to one another after the substitutions xicr = AF* and AP = Mo )

It must be noted that the dependences ngy(Ily) and n,(Ily) for @ = 0.4 and the dependence n,(Ily) for
a = 1.0 are presented in Fig. 4 for those values of n and Il for which the condition of criticality of the dis-
charge of the ejecting gas into the mixing chamber is satisfied:

a () > n(hy),
g (Ay) =alln, (1D
where
S S 2\”%1
T (h) = (l — 7») .

The dependence ngy(Ilg) for o = 1.0 is presented up to the critical value of II; in the case of the correspond-
ing dependence n,(Il) since in the case of the same dependence nep(Ip) at this value of @ the condition (17)
is always satisfied.

A comparison of the values ng) with the values n, and n; shows that the existence of critical modes of
operation of sonic gas ejectors with cylindrical chambers actually can be determined by Prigogine's theorem.

A comparison of the values n, and ng with the experimental values of n,;. obtained by I. I. Mezhirov
and G. I. Taganov (Fig. 5a) and by G. L. Grodzovskii and A. F. Ravdin (Fig. 5b) leads to the same conclusion.
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The first of these experimental values were obtained in the case of a peripheral location of the eject-
ing jet and the second in the case of a central location, and while the first values agree well with the cor-
responding calculated values of Yu. N. Vasil'ev down to nop = 0 the second values differ considerably from
them in the region of large II;.
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 NOTATION

are the specific heat capacities at constant pressure and constant volume;

are the stagnation temperature and pressure; _
is the ratio of cross-sectional areas of ejecting and ejected gas flows at entrance
to mixing chamber;

is the ejection coefficient;

is the velocity coefficient;

is the ratio of stagnation pressures of ejecting and ejected gases;

is the static pressure;

is the entropy production;

is the total entropy of system;

is the time;

is the entropy production in ejector mixing chamber;

is the entropy of a unit mass of gas;

is the mass flow rate;

is the specific gas constant;

Subscripts and Superscripts

1, 2, 3

denote parameters of the ejecting and ejected gases at the entrance to the mixing
chamber and of the gas mixture at the exit from the mixing chamber of the ejector,
respectively; :

denotes parameters in the space where discharge from the mixing chamber oc-
curs; _

denotes the critical mode of ejector operation;

denotes the blocking section;

denote the cases when A3 < 1 and A; > 1, respectively.
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